

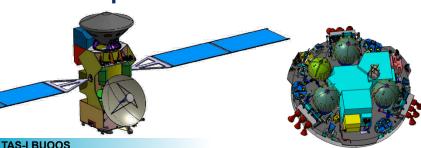
EXOMARS-2016 GNC Approach for Entry Descent and Landing Demonstrator

- S. Portigliotti, P.Martella
 Thales Alenia Space Italia, Torino, Italy
- O.Bayle, L.Lorenzoni, T,Blancquaert

ESA-European Space research and Technology Center (ESTEC), Netherlands
THALES

TAS-I BS-OOS

ESA led ExoMars 2016

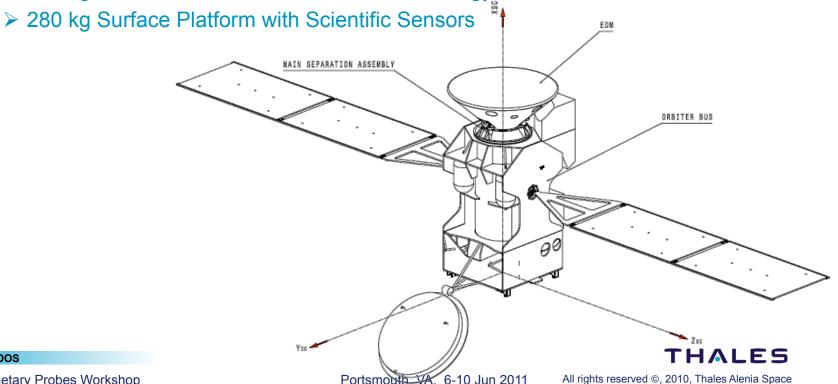

Page 2

2016 Mission Objectives

- Provide Europe with the required technologies for successful entry descent and landing of a payload on the surface of Mars
- Perform investigation on the Martian atmospheric trace gases and their sources
- Ensure communications capability for the other future international assets on the surface of Mars

2016 Mission Components

- **ESA provided S/C Composite**
 - ➤ Entry Descent & Landing Demonstrator Module (EDM)
 - ➤ Trace Gases Orbiter (TGO)
- NASA provided Launch vehicle


2016 Spacecraft Composite

Page 3

2016 Spacecraft Composite – 4400 kg launch mass

- Orbiter Module Trace Gases Orbiter (TGO) 1365 kg
 - Orbiter Bus and Orbital Scientific Payload Package of 125 kg
- Main Separation Assembly (MSA)
- Entry Descent & Landing Demonstrator Module (EDM)

➤ 600 kg, 2.4m diameter EDM with EDL technology sensors

EDL key facts

Page 4

- Arrival at a fixed date (16-Oct-2016) during Dust Storm Season
- Direct entry from hyperbolic approach, prograde entry in daylight
 - Hyperbolic excess velocity 3.256 to 3.463 km/s
- Separation from OM oriented at EIP attitude with a Main Separation Mechanism providing both axial relative separation rate of 0.3 m/s and stabilization spin rate of 2.5 RPM at the same time
- Entry 3 days after separation hybernation mode (19-Oct-2016)
 - > Entry velocities: co-rotating 5.70÷5.83 km/s, airspeed 5.97 ÷ 6.03 km/s
- Deployment of a single parachute (Disk-Gap-Band Huyghens type)
 - > supersonic deployment and deceleration to subsonic terminal velocities
- EDM sub-modules release strategy with a separation operated at Back Shell/ Front Shield and at Backshell under parachute/Surface Platform
- RCS: 3 clusters of 3 PWM engines each, directly mounted on the landed Surface Platform
- Active deceleration strategy with g-turn maneuver
- Crushable structures for impact load attenuation

Exomars EDM - Phases

ExoMars 2016 - EDM Entry

ENTRY

 Approach (coasting – 3 days from Separation & Hypersonic Braking

■ DESCENT

Parachute Deployment, Front Shield separation, Radar activation, Surface Platform separation

■ LANDING

Engines firing, GNC for Active Control (g-turn with parachute avoidance manoeuvres), Engines shutdown, Free-fall and touch down / impact on crushable structure

ExoMars 2016 - EDM Landing

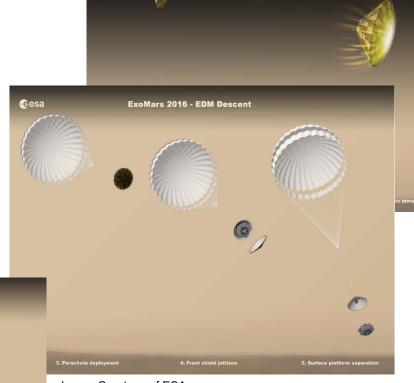
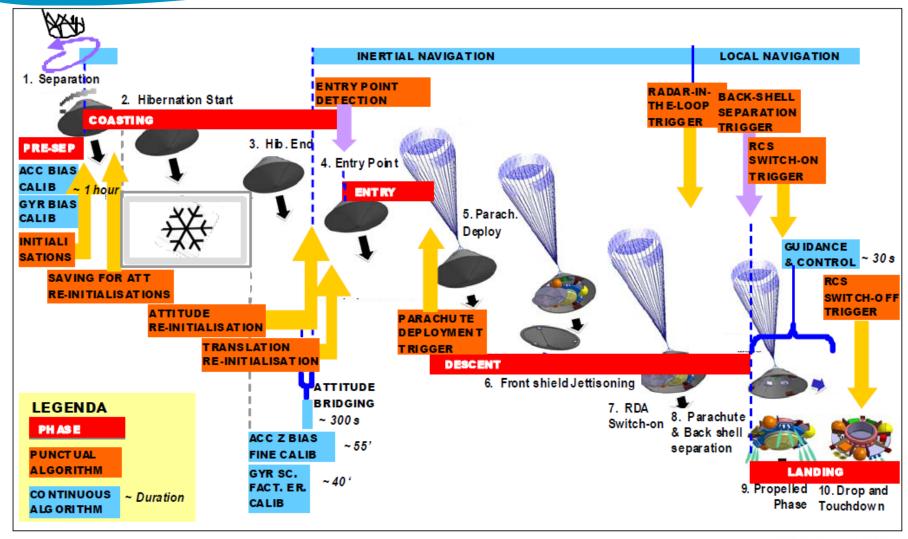


Image Courtesy of ESA

eesa

TAS-I BUO

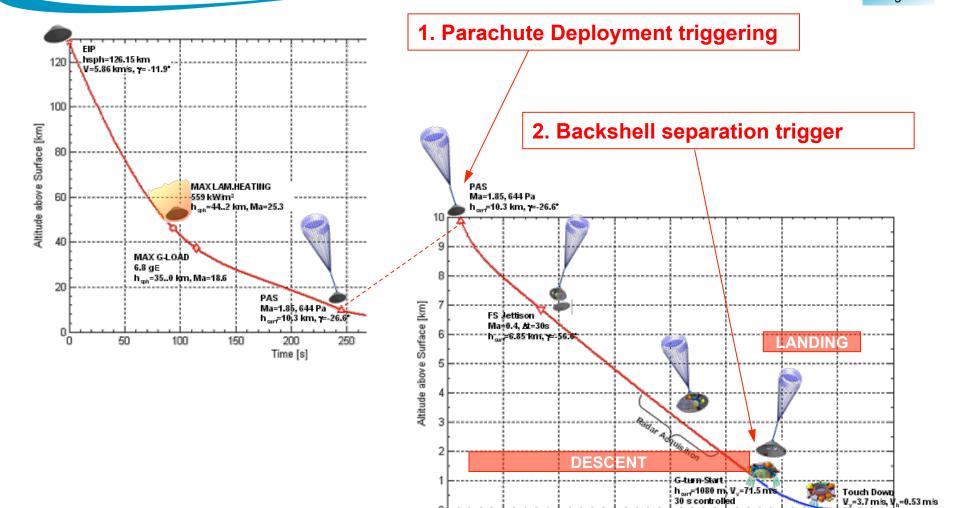
ExoMars 2016 EDM


Page 6

EDM: Entry and Descent Subsystems + Surface Platform Parachute Back cover TPS Back cover Surface Platform RDA Assembly Front Shield

EDM Mission Phases and GNC Tasks

Page 7



TAS-I BUOOS

Key GNC Tasks for successful EDL

Page 8

380

280

300

320

Time [s]

340

260

360

EDM Mission Phases and GNC Tasks

Page 9

Key tasks for successful EDL

Parachute Deployment Triggering

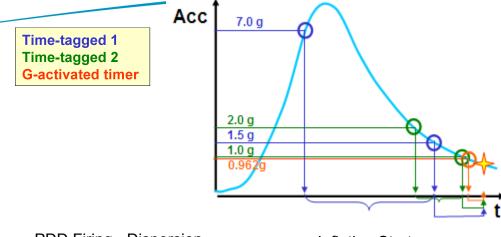
- ➤ Must be performed in the valid Mach dynamic pressure window
 - Early deployment → High dynamic pressure and inflation loads, canopy stability and drag oscillations
 - Late deployment → No altitude margin for Descent and Landing sequence
- ➤ Key events as Front Shield jettisoning, RDA RF channel switch on based on timer from Parachute Deployment trigger
 - Need sufficient time for RDA measurement convergence (non-ambiguous signals)
 - Radar in the loop trigger and Relative terrain navigation (navigation solution hybridization)

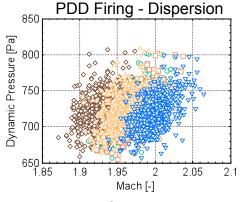
Backshell separation trigger

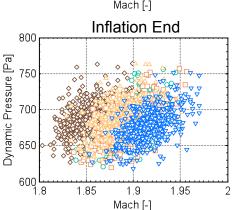
- ➤ Initiation of the landing phase propelled phase
- > Crucial for velocities cancellation within a given propellant budget
 - Under relevant variations of atmospheric conditions (density, winds)

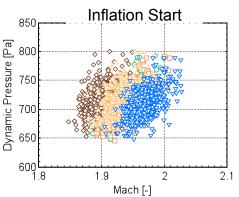
■ RCS cut-off and final drop

> Crucial wrt slopes and rocks, 2m drop altitude nominal


Descent Phase – Deployment triggering


G-activated timer Several algorithms tested


- Optimal performances wrt to given parameters
 - Altitude, Mach, dynamic pressure
 - ➤ Optimal → EDL parameter updating → tuning to expected atm. variability


Need for robustness

- A simple G-activated timer proved maximum robustness wrt environmental uncertaintie
 - Deployment window met wit no need of pre-EDL in-situ observations
- 7.8-11.3 km AGL (10.3 km nominal): 2.5 km uncertainty

- MC-EXM-B2X2-Al-SC-002MC-EXM-B2X2-Al-SC-005
- MC-EXM-B2X2-Al-SC-103
- MC-EXM-B2X2-Al-SC-104✓ MC-EXM-B2X2-Al-SC-112

Landing - Propelled Phase GNC

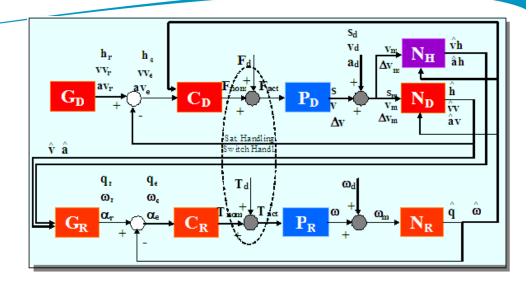
Page 11

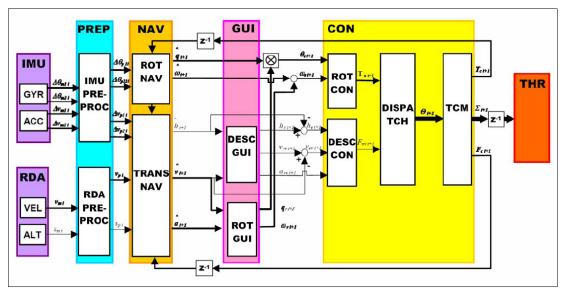
Landing phase

- Starts when a combination of predicted altitude and vertical velocity deemed suitable for terminal braking within the available propellant budget
 - > 55÷78 m/s vertical velocity (atmospheric variability), 0÷30 m/s horizontal velocity (worst case mesoscale)
- Separation trigger,
 - ➤ 1 second free drop → clearance between BCV and ESP.
- Closed loop trigger
 - > RCS becomes active with the Guidance and Control functions
 - > 3 seconds thrusters warm-up, used for de-spin and velocity maintenance (coarse mode)
- Backshell Avoidance Manoeuvre (BAM) trigger
 - ➤ Backshell avoidance, g-turn and ESP braking is initiated. Prescribed manoeuvre time with fixed nominal T2W within RCS duty cycle of 50%
- Pre-Switch-Off Trigger
 - ➤ No RDA measurement below 10 m → transition from RDA-based navigation to IMU-based
 - ➤ 1.5÷2 s before the manoeuvre termination the navigation laws freeze angular and vertical acceleration reference profiles to avoid destabilizing effects (singularitues for 0-attitude 0-Vh)
- Switch-off trigger
 - > RCS shut down and the ESP free fall.
 - Nominal altitude of 2 m and a Nominal vertical velocity of 0 m/s

GNC – Descent and Rotation Control

Descent Control Loop


 narrower bandwidth, control of descent profile (altitude and vertical velocity)


Rotation Control Loop

wider bandwidth, control of attitude and angular rate

Strong Coupling

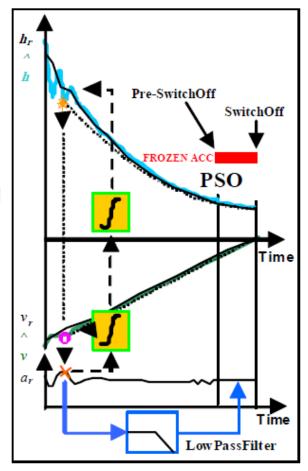
- Vertical deceleration driven by attitude control
- Attitude quaternion also used to convert the RDA from sensor frame Local Vertical frame
- Control force and torque transformed in dispatched command to the 9 thrusters

Descent Guidance

Page 13

Closed Loop Trigger

■ Aim

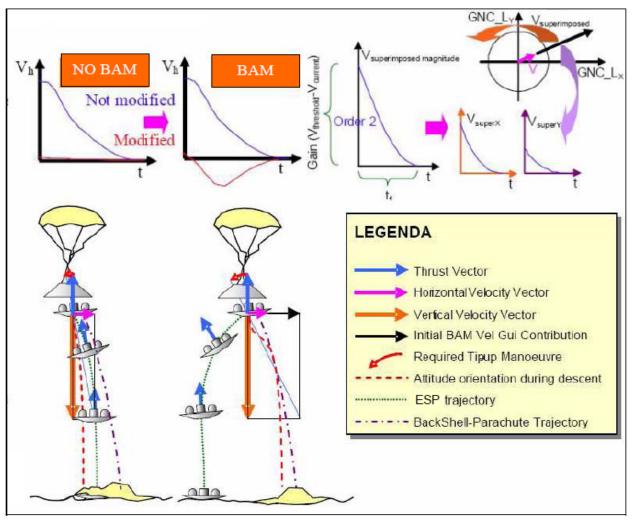

Concurrent cancellation of vertical and horizontal velocities as well as angular rates and attitude leveling

■ Targeting of constant deceleration profile

- Reference deceleration planned using the estimated altitude and vertical velocity
- Reference deceleration re-planned at each instant
- Updating terminated at the pre-switch-off to avoid instabilities and numerical singularities.
- 22-30 s manoeuvre time depending on initial mass (260-300 kg)

■ Pre-Switch-Off

In the last portion of the manoeuvre the reference acceleration is a frozen filtered value (reference decelerations accrued in previous instant of the propelled phase). No valid RDA below 10-12 m

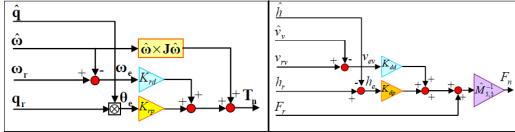


Backshell Avoindance Manoeuvre

Page 14

BAM - guidance

- determines the amount of intervention to be applied – large for low hor velocities
- augments the horizontal velocity components in input to the reference quaternion computation through fictitious superimposed terms
- reduces progressively the application of the superimposed terms and nullifies these terms after a prescribed time



Page 15

Rotation and descent control structure

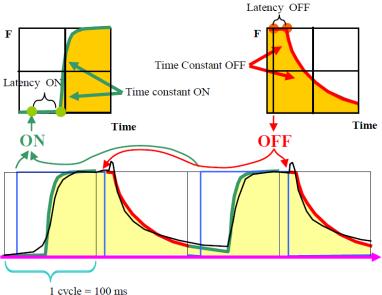
■ Feedback term

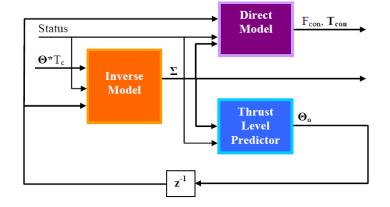
computed from reference and estimated states (PD law)

Feedforward term

- > based on the reference control action predicted for the next thruster activation
- Compensation term: introduced to cancel the known part of the non linearities and of the environmental disturbances
 - Model-based portion, cancels most of the known perturbations affecting the performances

Requested force and torque computed by the rotation and descent control blocks must be verified against *command saturation*


- Resources must be allocated taking into account that
 - ➤ Descent control, requires almost the same thrust level during the whole controlled phase (50% duty cycle allocated)
 - ➤ Attitude control requires a strong unbalance of the thrust level in the various thrusters for the first 4-5 seconds after BAM trigger
- Command dispatching to 9 thrusters with pseudo inverse and dedicated pulse width modulation strategy



Command dispatching, PWM, CHT40 thruster model

Thruster Command Module

- CHT400 thrusters proven in space for satellite F control
- Dedicated operation mode for 10 Hz control cycles
 - time constants of the rise and decay profiles and the latencies of the ON and OFF commands to be accounted for in the PWM scheme
 - ➢ Split into a *inverse model* and a *direct model*, selected upon thruster status trigger
 → model based impulse allocation
- Thruster dynamic characterization tests performed
 - Characterization of cold start profiles
 - Characterization of the performance parameters for several inlet pressures
 - Derivation reference performance (for GNC inverse model) and real performance (perturbed, for E2E simulations)
- Operation at 10 Hz achieved

Page 16

Verification Methods

Page 17

Verification of the stability for Descent GNC

- Analytical methods based on Embedded Model Control
 - ➤ Allows verification od stability and performance of the implemented GNC
 - ➤ Verification of robustness through assessment of the embedded model (in the control structure) with respect to design model including uncertainties

■ MonteCarlo Simulation

- > Dedicated campaign to verify the performance prediction with HiFi models
- ➤ GNC design simulator models migrated to functional E2E simulator
 - developed in TAS-I, full 6-dof simulation of EDL
- Progressively increasing complexity and fidelity for E2E simulator
 - Inclusion of functional modes for bus data communication to be implemented

Estimated performance conservative wrt MC

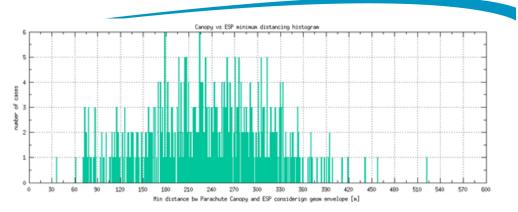
No	Performance variable	Unit	Target (max)	Analytic (max)	Monte Carlo $1-\alpha=0.997$
0	Angular rate (half cone)	rad/s	0.15	0.135	0.058
1	Attitude (half cone)	rad	0.125	0.094	0.11
2	Vertical velocity	m/s	0.8	0.29	0.64
3	Altitude	m	1.0	0.88	0.81
4	Horizontal Velocity	m/s	1.6	0.98	0.87

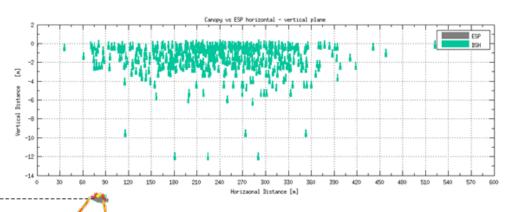
Thales Alenia

Altitude AGL 1400 1200 1000 Altitude [m] 800 -200 Vertical Velocity Horizontal Velocity **TAS-I BUOOS**

Performance - Descent and Impact

Parameter	units	Median	1:99%ile (90%CL)			
FS Jettisoning			, ,			
Altitude AGL	[km]	6455	4093 : 7747			
Vertical Velocity (Co-rotating)	[m/s]	83	76 : 87			
Radar RF-On						
Altitude AGL	[km]	5640	3285 6940			
Radar in the Loop Trigger						
Altitude AGL	[km]	1925	1900 : 1944			
Vertical Velocity (Co-rotating)	[m/s]	69.4	56.8 : 78.8			
Orizontal Velocity (Co-rotating)	[m/s]	9.7	1.4 : 30.6			
ESP Separation Event						
Altitude AGL	[m]	1360	1130 : 1562			
Vertical Velocity (Co-rotating)	[m/s]	67.7	55.7 : 78.3			
Orizontal Velocity (Co-rotating)	[m/s]	9.7	0.3 : 29.2			
Off-Vertical Angle	[deg]	2.1	0.1 : 9.6			
Closed Loop Triggering						
Altitude AGL	[m]	1283	1067 : 1473			
Vertical Velocity (Co-rotating)	[m/s]	71.6	59.6 : 82.2			
Orizontal Velocity (Co-rotating)	[m/s]	9.7	0.3 : 29.2			
Off-Vertical Angle	[deg]	5.0	0.2 : 18.5			
ESP Drop Event (RCS swith-off)						
Altitude AGL	[m]	2.0	1.4 : 2.7			
Vertical Velocity (Co-rotating)	[m/s]	0.1	-0.5 : 0.6			
Horizontal Velocity (Co-rotating)	[m/s]	0.2	0.0 : 0.7			
Off-Vertical Angle	[deg]	2.7	0.3 : 5.9			
ESP Touch Down Event						
Vertical Velocity (Co-rotating)	[m/s]	3.7	2.8 : 4.4			
Horizontal Velocity (Co-rotating)	[m/s]	0.2	0.0 : 0.7			
Propellant Consumtption						
Propellant Consumption Tank 1	[kg]	9.4	8.6 : 10.0			
Propellant Consumption Tank 2	[kg]	9.2	8.5 : 9.8			
Propellant Consumption Tank 3	[kg]	10.1	9.3 : 10.9			
Total Propellant Consumption	[kg]	28.7	26.5 : 30.5			


BAM - Performance


BAM effectiveness: BCV always "overtakes"

Minimum distance to be guaranteed

- Wide spread: 30÷500 m related to relevant horizontal wind range up to 30 m/s
 - Clearance wrt parachute canopy guaranteed

Monitoring stating event (T_0)

Simulation Set: MY24

Hor Dist

Conclusions

Page 20

General overview of GNC for the ExoMars 2016 European provided

Key focus on the landing phase, the core of the mission implying a loop of control closed on PWM retro-rockets

➤ Algorithmic functional architecture and verification strategies (analytic assessment and Montecarlo simulations)

Performance targets compatible with crushable structure limits appear to be reachable.

- ➤ Margins adequate to account for the uncertain factors and the model factors
- Requirements at touch down verified

Future work

- Model improvement from unit and subsystem tests
 - > Engines response at several feed pressures (performed)
 - > RCS hydraulic mockups
 - > Radar Doppler Altimeter field tests
 - Parachute High Altitude Drop Tests
- Simulator upgrade from performance model and inclusion of functional layers for GNC modules

Page 21

BACKUP SLIDES

Heritage - Shapes

Page 22

Comparison of Exomars EDM to previous missions

- Starting point Use of databases in open literature
- Work plan improve and refine for the specific Exomars mission
 - > specific EXM entry velocity and ballistic factor, specific season, flight profile not fully covered by the previous missions
- Dedicates numerical and experimental programme for AEDB and ATDB building

	Viking	Pathfinder	MER	Phoenix	EXM-DM	EXM-EDM
Diameter, m	3.5	2.65	2.65	2.65	3.4	2.4
Entry Mass (kg)	930	585	840	602	1200	600
Relative Entry Velocity (km/s)	4.5	7.6	5.5	5.5	5.07	5.98
Relative Entry FPA (deg)	-17.6	-13.8	-11.5	-13.2	-12.2÷-10.2	-12.4÷-11.7
m/(CDA) (kg/m2)	64	62	90	65		80
Xcg/D	-0.22	-0.25	-0.25	-0.25	-0.255	-0.26
Ma at Parachute Deployment	1.1	1.6	1.85	1.65	1.95	1.95
Hypersonic α _{trim} (deg)	-11	0	0	0	3	3
Control	RCS Damp.	Spinning	Spinning	Non-Spinning	Spinning	Spinning
Entry type	Orbit	Direct	Direct	Direct	Orbit Retrog.	Direct Posig.

TAS-I BUOOS

Exomars EDM vs MER

Data	Exomars EDM 2016	MER-B Opportunity
Entry date	19/10/2016	25/01/2004
Season	Late Summer	Winter
Landing site	Meridiani	Meridiani
Landing time (GST)	19-Oct-16 03:48 PM	25-Jan-04 04.55 AM
EIP Time (GST) (Entry beginning)	19-Oct-16 03:48 PM	25-Jan-04 04.45 AM
Mars Solar Longitude (LS)	244.7	338.99
Local True Solar Time (LTST) at entry	13:03	12:08:00
Local True Solar Time (LTST) at landing	14:22 - 14:35	13:23:00
Latitude at EIP	4.13N - 5.54N	4.1S
Longitude at EIP	17.3W - 16.6W	18.95W
Latitude at Landing	1.9S	-2.06N
Longitude at Landing	6.1W	354.01E
Landing Altitude /MOLA [km]	-1.44	-1.44
Entry type	posigrade	posigrade
Entry point [km]	121.5	125.92
Entry velocity (inertial) [m/s]	5912 - 6029	5720
Entry velocity (relative) (Co-Rotating) [m/s]	5663 - 5779	5480
Entry FPA (inertial) [deg]	Comidor	-11.47
Entry heading [deg]	118 - 125	83
Diameter [m]	2.4	2.65
Nose Radius [m]	0.6	0.66
Entry Mass [kg]	600	832.2
Ref Ballistic Factor [kg/m2]	77.86	88.88
Parachute diameter [m]	12	15.09
Parachute drag	0.4	0.4
Nominal parachute opening Mach	1.95	1.86
Nominal Parachute opening Dyn.P [Pa]	783	747
Nominal Parachute opening Altitude [km]	10.1	8.7
Nominal Parachute opening FPA	-22.8	-26.54
Heat Shield jettison time/parachute	40 s	20 s
HS jettison Mach	0.4	0.49
Peak Laminar heating (kW/m²)	602	422
Total heat load (MJ/m²)	36.87	27.1
Peak Deceleration	9.13g	6.4g

TAS-I BUOOS

International Planetary Probes Worksh Peak De